Search results for "Dark energy"
showing 10 items of 89 documents
ESTREMO/WFXRT: Extreme phySics in the TRansient and Evolving COsmos
2006
We present a mission designed to address two main themes of the ESA Cosmic Vision Programme: the Evolution of the Universe and its Violent phenomena. ESTREMO/WFXRT is based on innovative instrumental and observational approaches, out of the mainstream of observatories of progressively increasing area, i.e.: Observing with fast reaction transient sources, like GRB, at their brightest levels, thus allowing high resolution spectroscopy. Observing and surveying through a X-ray telescope with a wide field of view and with high sensitivity extended sources, like cluster and Warm Hot Intragalactic Medium (WHIM). ESTREMO/WFXRT will rely on two cosmological probes: GRB and large scale X-ray structur…
Euclid preparation. XII. Optimizing the photometric sample of the Euclid survey for galaxy clustering and galaxy-galaxy lensing analyses
2021
Pocino, A., et al. (Euclid Collaboration)
Accurate modeling of weak lensing with the stochastic gravitational lensing method
2011
We revise and extend the stochastic gravitational lensing method (the sGL method) first introduced by Kainulainen and Marra [Phys. Rev. D 80, 123020 (2009)]. Here we include a realistic halo-mass function and density profiles to model the distribution of mass between and within galaxies, galaxy groups, and galaxy clusters. We also introduce a modeling of the filamentary large-scale structures and a method to embed halos into these structures. We show that the sGL method naturally reproduces the weak lensing results for the Millennium simulation. The strength of the sGL method is that a numerical code based on it can compute the lensing probability distribution function (PDF) for a given inh…
Spectral energy distribution and generalized Wien's law for photons and cosmic string loops
2014
Physical objects with energy $u_w(l) \sim l^{-3w}$ with $l$ characteristic length and $w$ a dimensionless constant, lead to an equation of state $p=w\rho$, with $p$ the pressure and $\rho$ the energy density. Special entities with thisbproperty are, for instance, photons ($u = hc/l$, with $l$ the wavelength) with $w = 1/3$, and some models of cosmic string loops ($u =(c^4/aG)l$, with $l$ the length of the loop and $a$ a numerical constant), with $w = -1/3$. Here, we discuss some features of the spectral energy distribution of these systems and the corresponding generalization of Wien's law, which in terms of $l$ has the form $Tl_{mp}^{3w}=constant$, being $l_{mp}$ the most probable size of …
Testing LTB void models without the cosmic microwave background or large scale structure: new constraints from galaxy ages
2012
We present new observational constraints on inhomogenous models based on observables independent of the CMB and large-scale structure. Using Bayesian evidence we find very strong evidence for homogeneous LCDM model, thus disfavouring inhomogeneous models. Our new constraints are based on quantities independent of the growth of perturbations and rely on cosmic clocks based on atomic physics and on the local density of matter.
The virial theorem and the dark matter problem in hybrid metric-Palatini gravity
2012
Hybrid metric-Palatini gravity is a recently proposed theory, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini. The theory predicts the existence of a long-range scalar field, which passes the Solar System observational constraints, even if the scalar field is very light, and modifies the cosmological and galactic dynamics. Thus, the theory opens new possibilities to approach, in the same theoretical framework, the problems of both dark energy and dark matter. In this work, we consider the generalized virial theorem in the scalar-tensor representation of the hybrid metric-Palatini gravity. More specifically, taking into ac…
Limits on the parameters of the equation of state for interacting dark energy
2010
Under the assumption that cold dark matter and dark energy interact with each other through a small coupling term, $Q$, we constrain the parameter space of the equation of state $w$ of those dark energy fields whose variation of the field since last scattering do not exceed Planck's mass. We use three parameterizations of $w$ and two different expressions for $Q$. Our work extends previous ones.
Future CMB Constraints on Early, Cold, or Stressed Dark Energy
2011
We investigate future constraints on early dark energy (EDE) achievable by the Planck and CMBPol experiments, including cosmic microwave background (CMB) lensing. For the dark energy, we include the possibility of clustering through a sound speed c_s^2 <1 (cold dark energy) and anisotropic stresses parameterized with a viscosity parameter c_vis^2. We discuss the degeneracies between cosmological parameters and EDE parameters. In particular we show that the presence of anisotropic stresses in EDE models can substantially undermine the determination of the EDE sound speed parameter c_s^2. The constraints on EDE primordial energy density are however unaffected. We also calculate the future …
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic …
2012
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2012 RAS © 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Cosmological parameters degeneracies and non-Gaussian halo bias
2010
We study the impact of the cosmological parameters uncertainties on the measurements of primordial non-Gaussianity through the large-scale non-Gaussian halo bias effect. While this is not expected to be an issue for the standard Lambda CDM model, it may not be the case for more general models that modify the large-scale shape of the power spectrum. We consider the so-called local non-Gaussianity model, parametrized by the f(NL) non-Gaussianity parameter which is zero for a Gaussian case, and make forecasts on f(NL) from planned surveys, alone and combined with a Planck CMB prior. In particular, we consider EUCLID- and LSST-like surveys and forecast the correlations among f(NL) and the runni…